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Abstract 

There are few examples in the literature of Riemann surfaces whose defining algebraic equa- 
tions and full automorphism groups are completely determined. Although explicit examples of 
Riemann surfaces which admit automorphisms may be constructed by the use of symmetries in 
the defining equations of the surface, determining whether the admitted automorphisms consti- 
tute the full automorphism group is usually intractable, In this paper, it is proved that for many 
groups a simple lifting criterion determines whether the admitted automorphisms form the full 
automorphism group. The criterion is employed to give numerous examples of Riemann sur- 
faces whose defining equations and full automorphism groups are determined. @ 1998 Elsevier 
Science B.V. 

A M S  Classification (1985 Revision)." Primary 20H10, 30F99; secondary 14E09 

O. Introduction 

There is a large literature concerning Riemann surfaces which admit nontrivial auto- 

morphisms, in particular, an emphasis has been placed on finding groups of automor- 

phisms which are maximal in some sense. For example, let X be a compact Riemann 

surface of genus gx -> 2 with automorphism group Aut (X) .  It is well known that X 

can have at most 84(g X - 1) automorphisms. Groups isomorphic to the automorphism 

group of a Riemann surface which possesses this maximal number of automorphisms 
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are called Hurwitz groups and an extensive amount of research has been done to 
determine which groups are Hurwitz groups. Another example is the specification of a 

certain class of groups, say cyclic groups or nilpotent groups, and the determination of 

the maximal order of any group H of automorphisms in this class which a Riemann 

surface X may admit [4, 10]. Often in these cases however, the question of whether the 
admitted automorphism group is, in fact, the full automorphism group of the Riemann 

surface is not addressed. In addition, a Riemann surface which arises in such a manner 
often has the Riemann sphere as the orbit space under its automorphism group. As a 

result, little attention has been paid to Riemann surfaces which have orbit spaces of 
genus greater than zero under their automorphism groups. 

Again let X be a Riemann surface of genus g, _> 2. If the orbit space of X under 

Aut (X)  has genus g, we say X has a genus g quotient. In this paper we examine 
Riemann surfaces which have a genus g quotient, for g _> 1. The fundamental problem 
considered is the following: If X admits a group of automorphisms H, and if the 

orbit space X/H has genus g -> 1, under what conditions can we be assured that 

H = Aut(X) ,  the full automorphism group of X. Although this is a difficult question in 
general, in this paper a criterion is given which can be applied to a large number of 

automorphism groups to determine which are the full automovphism groups of a given 

Riemann surface. Techniques involving Fuchsian groups are employed in the proofs 
of theorems of this paper; however the statements of the theorems are independent of 

Fuchsian groups. This has an important benefit concerning the construction of explicit 

examples of Riemann surfaces whose defining equations and full automorphism groups 
are completely determined. We describe this below. 

There are two main ways to consider a compact Riemann surface, either as the upper 

half plane U under the action of a Fuchsian group, or as the nonsingular model for 
a function field of transcendence degree one over C, as is done in algebraic geome- 

try. The strengths of each method, unfortunately, do not easily allow the construction 
of explicit examples of Riemann surfaces with desired automorphism groups. For ex- 

ample, techniques involving Fuchsian groups can be used to show the existence of 
large numbers of Riemann surfaces whose full automorphism groups are completely 

determined. In general, they are obtained by mapping an appropriate Fuchsian group A 
onto a finite group H. If F denotes the kernel of the homomorphism, then the Riemann 

surface X = U/F admits H as a group of automorphisms. If A is chosen, for example, 

to be a finitely maximal Fuchsian group, and if F contains no nonidentity elements 
of finite order, then H = Aut(X) .  Unfortunately, although this method gives a large 

amount of information about Riemann surfaces which admit automorphisms, it rarely 

yields defining algebraic equations for the Riemann surfaces found. In fact, given the 
defining equations of a Riemann surface, I am unaware of a method which determines 
whether a Fuchsian group corresponding to the surface is finitely maximal or not. 

On the other hand, using techniques of classical algebraic geometry it is easy to 
give the defining algebraic equations of a Riemann surface X which admits nontrivial 
automorphisms by using symmetries in the defining equations for X. However, it is 

rarely possible to directly determine if the admitted automorphisms constitute the full 
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automorphism group of  the Riemann surface. The theorems of  this paper can be applied 

to a Riemann surface defined explicitly by a set of  algebraic equations. The results 
of  this paper, in conjunction with families o f  Riemann surfaces which have a trivial 
automorphism group, yield a limitless number of  examples of  Riemann surfaces whose 

defining equations and full automorphism groups are completely determined. Examples 
are considered in Section 4. 

Our main results are Theorems 2.4, 2.8, 3.1, and Corollary 3.5. Each theorem has 
a similar flavor. Let X be a compact Riemann surface of  genus greater than one, let 

H < Aut(X), let Y = X/H, and let g _> 1 denote the genus of  Y. If  H satisfies certain 
hypotheses, then H = Aut(X) if and only if no nonidentity automorphism of  Y lifts to 

X. I f  the automorphism group of  Y is completely determined, it can, at least in theory, 
be ascertained if H = Aut(X). In particular, if Aut(Y) is trivial, then H = Aut(X). 

The paper is organized as follows. In Section 1 we have preliminary remarks con- 
cerning Fuchsian groups. In Section 2 we prove a theorem concerning simple groups, 

and groups whose orders are not divisible by "small" primes. In Section 3 we consider 
nilpotent, fixed-point free automorphism groups. In Section 4 we apply our results to 
give explicit equations of  Riemann surfaces whose defining equations and full auto- 

morphism groups are completely determined. In Section 5 we restrict our attention to 
simple groups of  automorphisms which yield a genus 3 orbit space. 

1. Preliminaries 

All Riemann surfaces are assumed to be compact. For basic facts concerning Fuchsian 

groups and automorphism groups arising from mapping a Fuchsian group onto a finite 
group see [8]. We emphasize here only a few relevant points. 

Let A be a Fuchsian group of  signature (g;el . . . . .  e,) with g _> 1 and let the finite 
group H be a homomorphic image of  A. Let U denote the upper half plane and let F 

denote the kernel of  this homomorphism. Then the Riemann surface X = U/F admits 

H as a group of  automorphisms, and Y ---- U/A is the orbit space o f  X under H. In 

addition, if F contains no elliptic elements and if g _> 2, then the full automorphism 

group of  X is N(F)/F, where N(F) denotes the normalizer o f  F in PSL(2, R). If  A 

is chosen to be finitely maximal, in other words, not contained as a subgroup of  finite 
index in another Fuchsian group, then obviously A is self normalizing in PSL(2, R), 

and thus H = Aut(X). 
Unfortunately, although "most" Fuchsian groups of  signature (g; el . . . . .  er) with g > 2 

are finitely maximal, it is practically impossible to tell if a Riemann surface defined by 

a set of  algebraic equations has an associated Fuchsian group which is finitely maximal 

or not. The problem is that knowledge of  the Fuchsian group associated to a Riemann 

surface rarely yields information about its defining equations. Thus, if we search for 
an explicit example of  a Riemann surface X which has a particular full automorphism 

group, H = Aut(X), then it is desirable to have a criterion independent of  Fuchsian 

groups to determine if a Riemann surface which admits H as a group of  automorphisms 
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has H as its full automorphism group. What the main theorems of  this paper yield is 

that for many groups it can be determined if  H is the full automorphism group of  X 

by examining the automorphism group of  X//H. 
Let X be a compact Riemann surface of  genus gs which admits a group o f  auto- 

morphisms H, let Y be the orbit space o f  X under H, and let g denote the genus of  

Y. Assume that branching occurs at r points of  Y, say Pj . . . . .  Pr, and let the branching 

index at Pi be mi - -  1 (in other words at these points the map from X to Y is m, to 

one and the ramification index at the point Pi is mi). We recall the Riemann Hurwitz 

formula [2] 

2(g x - 1 ) = ] H ]  2 ( 9 - 1 ) +  1 -  1 . (1) 

i = l  

We note that this formula is true even if  Y does not arise as an orbit space, but 

is merely a Riemann surface which X covers as long as the following condition is 

satisfied: I f  P is a point o f  Y at which branching occurs, then all points of  X which 

lie over P must have the same branch index. In this case, ]H I in (1) is replaced by 

the degree o f  the map from X to Y. 

Definition 1.1. Let X be a Riemann surface of  genus greater than one and let G = 

Aut(X). If  X/G has genus g we say X has a genus g quotient. 

Proposition 1.2. Let X be a Riemann surface, H (_ Aut(X)  and let X/'H have genus 
g ~ 2. Then ]H I <_ (g,x - 1)/(g - 1). Equality holds i f  and only i f X  is unbranched 

over its orbit space under H. 

ProoL Immediate from (1). [] 

Definition 1.3. Let X be a Riemann surface, let H < Aut(X),  and let Y = X/H. Let 

E Aut(Y) and let ~z : X -~ Y be the map which takes a point of  X to its orbit 

under H. We say ~r lifts to or' C Aut(X)  i f  7z~r / = a~. 

There is a natural setting in which cr E Aut(Y)  lifts to a t E Aut(X). Let A be a 

Fuchsian group and suppose q ~ PSL(2, ~) normalizes A. Then r/A is an automorphism 

of  Y = U/'A. I f  F ,1 A and r/ normalizes F, then ~TA lifts to the automorphism ~If o f  

X =- U//F. 

2. A property concerning normalizers 

We begin with a group theory definition. 

Definition 2.1. Let H be an arbitrary finite group and let k be a fixed positive integer. 

We say H has the "normalizer property for index k," denoted by N(k) ,  i f  whenever H 
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is a subgroup of  a group G with [G : H]  _< k then H < N(,(H) with strict inequality 
holding. 

Remark.  Let (g; el . . . . .  ei . . . . .  en), with n _> 0, be a sequence of  positive integers with 
g _> 1 and each ei _> 2. We associate an integer k to the sequence as follows. If  each 

ei = 2 or 3, or if the sequence is (g), we associate the integer 42(29 + n - 2) to it. I f  

each e i is 2,4 or 5, with a 5 actually appearing, let k = 20(2g + n -  2). I f  each ei is 
a 2,4 or 7, with a 4 and 7 actually appearing, let k -- 28(29 + n - 2)/3. In all other 
cases, let L equal the least common multiple of  all the ei 's greater than 3. If  L = 4, 5 

or 6, define k = 6L(2g + n - 2)/(L - 3). I f  L > 7, define k ~ 6L(2g + n - 2)/(L - 6). 

Proposition 2.2. Let X be a compact Riemann sutface o f  genus greater than one, let 
H < Aut(X),  let Y = X/H, and let g > 1 denote the genus of  Y. Assume exactly n 
points of  Y are ramified in X and let el . . . . .  e,, be the ramification indices at these 
points. Let k be calculated, as in the Remark, for (g;ei . . . . .  en). Assume H has the 
property N(k).  Then H ¢ Aut(X)  i f  and only i f  there is a nonidentity automorphism 
of  Y which lifts to an automorphism of  X. 

Proof.  Assume H is not the full automorphism group of  X. Let F be a fixed point free 
Fuchsian group such that U/F is biholomorphic to X. Since H <_ Aut(X), there exists 

a Fuchsian group A such that F ~ A and A/F ~ H. We identify Y with U/A and note 
that A has signature (g;el , . . . ,en).  Let A = N(F) ;  recall that G = N(F) /F  ~--Aut(X). 
Assume the signature o f  A is (g0 ; f l  . . . . .  fro). Then 

IG[ 2 9 0 - 2 ) +  ( 1 - 1 / f i  - - 2 g , . - R = l H ]  2 g - 2 ) + Z ( 1 - 1 / / e i .  
i~l  i=1 

(2) 

Thus, 

[G :I41 = 
((29 - 2) + ~ i ~ I  (1 - 1/,ei)) 

((2g0 - 2) + ~iml (1 - 1/fi))" (3) 

The numerator of  (3) is clearly less than or equal to 2g + n - 2. Note that each ei 
must divide one of  the fj.'s. The denominator will have minimal size if the signature 

o f  A is (0; f l ,  f2 ,  f3) .  One quickly concludes that if ei -- 2,4 or 5 for each i with 
1 < i < n, then the minimal value o f  the denominator occurs if the signature of  A is 

(0; 2, 4, 5). Similarly, if each ei is 2, 4 or 7, then the minimal value of  the denominator 

occurs if the signature of  A is (2,4,7).  I f  L = 4,5, or 6, then the minimal value for 
the denominator occurs if the signature o f  A is (0;2,3,2L).  Similarly, if L > 7, then 

the minimal value for the denominator occurs if the signature of  A is (0;2, 3,L). For 
the remaining cases, the minimal value of  the denominator occurs when the signature 

of  A is (0; 2, 3, 7). Thus [G : H]  < k. Thus, if H is not the full automorphism group 
of  X, then 1 < [A : A] -- [G : H I  < k. Since H has the property N(k),  there exists an 
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element t/ E A, with r/ ~ A, such that t/ normalizes A. Thus, qA induces a nontrivial 

automorphism of  Y = &7'A and the automorphism ~IA of  Y lifts to the automorphism 

~lY of  X. Thus, there exists a nonidentity automorphism of  Y which lifts to X. The 
converse statement is trivial. [] 

From Proposition 2.2, whether a group which satisfies N ( k )  for suitable k is the full 

automorphism group of  a Riemann surface depends only on the automorphism group of  
the orbit space. We now determine two large classes of  groups which satisfy N ( k )  for 

suitable k. These are purely group theoretic results; however our goal is to specialize 
to the case of  automorphisms of  Riemann surfaces. 

Proposition 2.3. Let  H be an arbitrary finite group and k' > 1 an arbitrary integer. 

Assume there exists a finite group G with H < G, [G : HI = k',  and N o ( H )  = H. 
Suppose the maximal  subgroups o f  H have m l , . . . ,m~  as their respective indices in 
H. Then there exist nonnegative integers t l , . . . , t s  such that 

± k' = [G " H] = 1 + tirol. 
i=1 

(4) 

Proof.  Write G as a disjoint union of  double cosets: G = H g l H  U H g 2 H  U. ' .  U HgrH. 
We may assume gl 6 H. It is well known that the number o f  cosets of  H contained in 

H g j H  equals [H : H ~j* N H]. Since H = No(H) ,  we have [H : H aj V/H] > 1 for j > 1, 
in fact, it must be a multiple of  one of  the mi. Since HgIH = H we obtain (4). 

Theorem 2.4. Let  X be a Riemann surface o f  genus greater than one, let H < Aut(X) ,  

let Y = X,/H, and let g > I denote the genus o f  Y. Assume n points o f  Y are ramified 
in X and let k be calculated as in the Remark. In addition, assume H contains no 

proper subgroup o f  index less than k. Then H = Au t (X )  i f  and only i f  no nonidentity 

automorphism o f  Y lifts to X. In particular, i f  the order o f  H is not divisible by a 
pr#ne less than k, then H = Au t (X)  i f  and only i f  no nonidentity automorphism o f  

Y lifts to X. 

Proof.  Proposition 2.3 and the hypothesis on H guarantee that H satisfies N(k) .  Propo- 

sition 2.2 yields the conclusion. [] 

Corollary 2.5. Let  X be a Riemann surface oj" genus g~ > 2, let H <_ Au t (X )  have 
order ~1 ~2 ~, Pl P2 "'" Ps , and let Y = X /H  have genus g > 1. Assume at most n points 
oJ" Y are ramified in iV,. and assume that for  each i, with 1 <_ i <_ s, there is an 

element o f  H o f  order Pi which is not f i x ed  point f ree  on iV. Furthermore, assume 
each prime sati,sfies Pi >- 6 ( 2 g + n -  1). Then H = Au t (X )  i f  and only i f  no nonidentity 

automorphism o j ' Y  lifts to X. 

Proof.  Fix i, for some i _< s, and let p = Pi. By assumption, there is an element 
of  H of  order p which is not fixed point free on X. Thus, the ramification index 
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at some point of  Y must be divisible by p/~ for some /~ with 1 _< /~ <_ ~. Thus, 

if k is calculated as in the Remark, p/3 divides L. But the function L/(L - 6) is a 

decreasing function if L > 6, thus p / ( p  - 6) _> p/~/(p/~ - 6) _> L/(L - 6). In addition, 

p _> 6p(2g + n -  2 ) / ( p - 6 )  if and only if p _> 6(2g + n 1). Thus if p > 6(29 + n -  1), 
then p > 6p(2g + n - 2)/ '(p - 6) > 6L(2g + n - 2)/"(L - 6). Thus, each prime which 
divides the order of  H is greater than or equal to k. Thus, H satisfies N(k) .  The result 

follows from Theorem 2.4. [] 

The above corollary is of  great utility if only a bound on the number of  points ram- 

ified is known, without much information about the ramification index at each point. 

We now determine a second class of  groups which satisfy N(k) .  Recall that if G 
is an arbitrary group and p is a prime dividing the order o f  G, then the subgroup of  

G generated by all o f  the Sylow p subgroups of  G is either a characteristic proper 

subgroup of  G or G itself. 

Proposition 2.6. Let  k > 1 be an arbitrary positive integer and let H be a group 

whose order is divisible by a prime p > k. Suppose Jurther that H has no charac- 

teristic subgroup which contains all the Sylow p subgroups o f  H. Then H satisfies 

N(k) .  

Proof. Assume H <_ G with [G " H] = k' _< k. Let P be a Sylow p subgroup of  H 

and let n denote the number o f  Sylow p subgroups of  H. Since p > k, P is a Sylow 

p subgroup of  G. 

We have the following: 

{G • NG(P)]{NG(P) " NH(P)] = {G : H ] { H  " NH(P)]. (5) 

The first factor is the number of  Sylow p subgroups of  G, and must be of  the form 
n + t for some nonnegative integer t. In addition, p divides t, since n _= 1 mod (p )  

and n + t _= 1 rood (p).  Thus, we have 

(n + t)[NG(P) " NH(P)] = k'n. (6) 

From (6) it is obvious that [N6(P) "NH(P)] <_ k' < p. However, from Eq. (6) we 

obtain [Nc(P)  ' NH(P)] ~ k ~ rood p, which implies [NG(P) " NH(P)] = U. Thus, 
t = 0, so there are n Sylow p subgroups of  G and they are all contained in H. Thus, 

H contains the characteristic (in both H and G) subgroup which they generate. By 

assumption they generate H, thus H is a normal, in fact, characteristic subgroup of  G. 
[] 

Corollary 2.7. A simple group whose order is divisible by a prime p > k satisfies 

N(k) .  

Theorem 2.8. Let  X be a Riemann surface o f  genus greater than one, let H be a 

nonabelian simple group and suppose H < Aut(X) .  Let  p be the largest prime dividing 
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the order o f  H, let Y = X/H, and let 9 >- 1 denote the 9enus o f  Y. Assume n points" of  
Y are ramified in X and the ramification indices at these points are el , . . . ,e, , .  Let k 

be computed, as in the Remark, for  the sequence (9; el . . . . .  e,). I f  H 7 k Aut(X), then 

one of  the followin9 occurs: 
1. H is a maximal subgrou p of  a simple 9roup G and p < [G : H] <_ k. 

2. H 

P 
3. H 

4. A 

I f p >  

<_ Aut(N) where N is a characteristically simple, nonsolvable 9roup with 

_< IXl < k. 
<_ GL(n,q) where p < q~ < k. 

nonidentity element o f  Aut(Y)  lifts to Aut(X). 

k then 4 occurs. 

Proof. Let G <_ Aut(X)  be minimal with respect to containing H, thus H < G _< 

Aut(X)  and H is maximal in G. If  H <  G then a nonidentity automorphism of  X/H 
lifts to X, which yields case 4. Assume now' that cases 4 and 1 do not occur. Then 

H < G and G is not simple, thus there exists N <  G. Since H is simple, N A H = id 
and by minimality G = HN. Also by minimality, N must be characteristically simple. 

If  N is solvable, this yields that N is elementary abelian, thus IN] = q~ and H embeds 
in Aut(N) ~- GL(n,q) which yields case 3. If  N is not solvable, then H embeds 

into the automorphism group of  the nonsolvable, characteristically simple group N. 

This yields case 2. Corollary 2.7 yields the bounds concerning p. This completes the 

proof. [] 

Most simple groups are known to be generated by two elements and it is conjectured 

that all finite simple groups can be thus generated. Let Y be a Riemann surface of  

genus ,q _> 3 with a trivial automorphism group and let A be a Fuchsian group of  
signature (9 ;0)  such that U/'A is biholomorphic to Y. Let H be a nonabelian simple 

group generated by 9 or fewer elements, and suppose the order o f  H is divisible by 
a prime greater than 84(9 - 1). Then certainly H is a homomorphic image of  A; let 

F denote the kernel of  the homomorphism. Then X = U/"F admits H as a group of  
automorphisms and Y = X/H. Since Y has trivial automorphism group, we conclude 

from Theorem 2.8 that H = Aut(X). 
A further example pertaining to this theorem is given in Section 5. 

3. Nilpotent automorphism groups 

In this section we consider nilpotent fixed-point free automorphism groups. Through- 
out this section we assume ,q is an integer greater than one. We associate a set of  powers 

of  primes to y denoted by ~ .  If  p is a prime and pk ] 2(9 - l), then pk E ~q. If  
k >_ 1 and pk does not divide 2 ( 9 -  1), but pk- i  does, then pk C ~zq if and only if 

there is an integer solution for t in 

2 ( 9 -  1) < t < 2 ( , q -  1) (7) 
pk - - p k - l ( p _  1)" 
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Remark. One easily deduces that: 

1. I f  p does not divide 2(9 - 1) and p (p  - I) _< 2(9 - 1), then p E re q, since in 
this case the right-hand and left-hand sides of (7) will differ by at least 1. 

2. I f p > g - l ,  then p~ rc~  unless p = g , p = g - l ,  or p = 2 g - l .  In these three 

cases p Enq. 
3. I f  2 k is the largest power of 2 which divides 2 ( g -  1), then 2 ~ E ny for all 

r < < k + l .  

Therefore, in practice, one employs (7) only for odd primes p < g -  I which satisfy 
p ( p -  1) > 2 ( 9 -  1) but which do not divide ( g -  1), and for odd prime powers pk 
such that pk does not divide ( g -  1) but pk- i  does. 

We define a set of  primes //u. A prime q is in //~ if  and only if q divides p -  1 for 
a prime in ~ or q divides p r _  1 for a prime power pr in rrq. We will refer to elements 
of  H,o as unfavorable primes (for g). Primes not in H~ will be called favorable primes. 
It follows easily from the Remark that 3 and 4 are elements of rcu for all g, hence 2 
and 3 are unfavorable primes for all g. 

Let H be a nilpotent group. Let HI be the product of the Sylow q subgroups for all 
unfavorable primes q, and let ~ be the product of  the Sylow q subgroups for all the 
favorable primes q. Note that H = H1 +/ /2  and both H1 and//2 are normal subgroups 

of H. 

Theorem 3.1. Let X be a Riemann smface which admits a nilpotent, f ixed point fi'ee 
group of  automorphisms H. Assume the 2 Sylow subgroup o f  H has class two or 
less. Let Y = X//H, and let g > 2 denote the genus o f  Is. Let H = Hi +112 be 

the decomposition o f  H as described above. Let Z denote the Riemann sutJ'ace X//H2 . 
Since 112 < H, elements of  H induce automorphisms of  Z. Then H = Aut(X)  i f  and 
only i f  no element of  Aut(Z) not contained in H lifts to an automorphism of)(.  

Before giving the proof we state an immediate corollary. 

Corollary 3.2. With notation as above, suppose the order of  H is divisible only by 
favorable primes. Then H = A ut(X) if  and onl)' i f  no nonidentity element of  Aut(Y)  
lifts to an automorphism of  X. In particular, i f  the order o f  H is divisible only by 
favorable primes and if  Aut(Y)  is trivial, then H = Aut(X). 

Our proof depends on the following two theorems. 

Theorem 3.3 (Deskins et al.). Let H be an arbitrary nilpotent group and suppose the 
class of" the 2 Sylow subgroup of  H is" two or less. Assume H is a maximal subgroup 

of  a group G. Then G is solvable. 

Proof. See [5, p. 445]. D 
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Theorem 3.4 (Galois) .  Let  G be a solvable primitive permutation (4roup, let N be 

a minimal normal sub(4roup o f  G, and let G] be an isotropy sub(4roup. Then N is 

re(4ular, has prime power order, and is elementary abelian. In addition G = NG1 and 

Gi ~ N  = id. 

Proof .  See [5, p. 159]. [] 

Proof of Theorem 3.1. If  an automorphism of  Z not contained in H lifts to X, then ob- 

viously H < Aut (X )  with strict inequality holding. Conversely, suppose H ~ Aut(X) .  

We will show there is a nonidentity automorphism of  Z which lifts to X. Let G be 

any subgroup of  Aut (X )  which is minimal with respect to containing H. If  H ~  G, we 

are done, so we may assume H is maximal,  but not normal in G. 

Let j = [G : H] and let G act on the left cosets of  H by left multiplication. Thus, 

G maps onto a subgroup of  the symmetric group on j letters S/" Let ~b denote this 

map, (thus qb((4) maps xH to (4xH) and let K be the kernel of  4). Then K = core~(H), 

the core o f  H in G; it is the largest normal (in G)  subgroup contained in H. Thus, 

G ~ = G/K is a permutation group; since H ~ = H/,'K is maximal,  G ~ is a primitive 

permutation group on j letters. Theorem 3.3 yields that G ~ is solvable. Theorem 3.4 

yields that there exists a unique minimal normal subgroup o f  G'  which we denote by 

N ~, and that N ~ • H ~ = id, G ~ = H~N ~, and N ~ is elementary abelian. Let m = p~ = 

]N~I. We note that since K = core,~(H), H ~ contains no normal subgroups except for 

the identity. 

Lemma.  p does not divide the order o f  H t. 

Proof .  Assume p does divide the order o f  H ' .  Since H' is nilpotent, let P be the 

unique normal Sylow p subgroup of  H t. We note that H ~ < N j ( P )  so by minimali ty 

either N~j(P) = H'  or N j ( P )  = G'. But P must be contained in a Sylow p subgroup 

o f  G t, say P < P ' ,  with strict inequality holding. However, in p groups a subgroup 

is always strictly contained in its normalizer. Thus, there are elements of  P~, not in 

H '  which normalize P. Thus, N; , (P)  = G ~. But this contradicts that H ~ contains no 

normal subgroups. Thus, p does not divide the order of  H ~. [] 

We now translate this information into the language of  Fuchsian groups. Recall that 

X is an unbranched cover of  K thus X is an unbranched cover of  X ~ = X//K and X '  

is an unbranched cover of  K Let F < A < A be Fuchsian groups such that A is fixed 

point free, A/F ~- H~,A/F ~ G', Y = U/'A,X/G = U/'A, and X r = X/'K = U/F. Let Q 

be a point of  U/"A. Since U//A is the orbit space X/G, each point of  X which lies over 

Q must have the same branch index. This forces each point of  Y which lies over Q to 

have the same branching index. Since iN~l = p~, any ramification of  Y over U/A must 

be a power of  p. However,  since N '  is elementary abelian, there are no elements of  

G' which have order p~ with k > 1. Since A / F  ~ G ~, and since F contains no elliptic 

elements, the only elliptic elements in A have order p. Thus, A has signature ((4';0) 
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or (g';  p ,  p ,  p . . . .  , p ) ,  where in the former case g' >_ 2 and in the latter case g~ > 0. 

The Riemann Hurwitz formula ( l )  yields 

2 ( 9 -  1 ) =  2p~(g ' -  1 ) + r p ~ - ~ ( p -  1). (8) 

Lemma.  U/A does not have genus zero. 

Proof.  Assume U/'A has genus zero. Then A is generated by elements of  order p. 
Thus, G ~ is generated by elements of  order p. But this says that G r is generated by 
elements of  N ' .  This contradicts that N '  ~ G/. 

Let q be any prime dividing the order of  H ~, and let Q be the Sylow q subgroup 
of  H ' .  Since H '  is a maximal subgroup of  G ~ and H t contains no normal subgroups, 
H '  = N , ( Q ) .  Thus, for each prime q dividing IH~[, there are m = p~ Sylow q 
subgroups of  G J. In particular, q divides p~ - l for each q which divides the order 
of  H ~. We will show that p~ is an element of  ~j, and thus q ~ H~j; let us assume 
this fact for the moment. Thus, if q divides the order of  H, and if q ~ f/g then q 
does not divide p~ - 1 and consequently q does not divide the order of  H ~ = H/K. 

Thus, the Sylow q subgroup of  H is a characteristic subgroup of  H contained in K. 
Thus H2, which is the subgroup generated by the Sylow subgroups corresponding to 
all primes not in /7¢/ is a characteristic subgroup of  K. Since K ~ G, we obtain ~ < G. 
In particular, G induces automorphisms of  Z = X/H2. Thus, there is an element of  
Aut(Z) not contained in H which lifts to an automorphism of  X. 

To complete the proof  it is necessary to show that p~ ~ 7c0. This is accomplished 
by examining (8). Recall gr > 1 in (8) since the orbit space under G' cannot have 
genus zero. 

I f  p = 2, then (8) yields that 2~-112(g - 1), thus 2 ~ E ~z.o. Now assume p is odd. If  
p~12(g- l), then by definition p~ ~ ~z~j. Thus, we may assume that p~ does not divide 
2(g - 1) for the odd prime p. Again from (8) it is clear that p~-I  divides 2(g - 1). 

Thus, 

( g -  1) _ p ( g ,  l ) +  r ( p -  l)/'2. (9) 
p:~-I 

Note also that 

(g - l )  _ p(,q - l)  2 ( g -  l ) ( p _  1)/2. (10) 
p~- I  p~- I  p~-~ 

From elementary number theory we conclude that there exists an integer t such that 

0 < _ g ' - I -  ( g - l )  t ( p -  1) ( l l )  
p~-~ 2 

and 

2(g-  ~) (12) 0 < r = tp p~-t 
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This yields 

2 ( g - l )  2 ( g -  1) 
- -  < t < ( 1 3 )  

p~ - - p ~ - ~ ( p -  1)" 

Thus p~ E ~zu. This completes the proof of  the theorem. 

We give one more corollary. 

Corollary 3.5. Let  X be a Riemann surface and let H << Au t (X )  be a nilpotent, f i xed  

point jJ'ee automotThism group o f  odd order. Let  Y = X/H, let g >- 2 denote the 

genus o f  Y, and let g - I = 2km where m is" odd. Assume that ]H I is not divisible by 

a prime less than or equal to (g - 1 )/2. In addition assume ]H I is not divisible by 

any o f  the following primes q: 

1. q = g - 1 i f  both g -  1 and 2 g - 1  are pr#ne. 

2. Any  prime divisor q o f  2 s - 1 where 1 < s < k + 2. 

3. q = (3)+t - 1)/2 i f 0  - 1 = 3J or 2(3J). 
4. q = (M +1 - 1)/4 i f  g -  1 = 2(5J). 

Then H = A u t ( X )  i f  and only i f  no nonidentity automorphism o f  Y lifts to X. 

Note that there are only 7 primes less than one billion o f  the form q = (3 j + l -  1)/2 

or (5 j+l - 1)/4. 

Proof. It is sufficient to show that the unfavorable primes for g which are greater than 
( g -  1)/2 are among the primes listed in 1-4 above. For the rest o f  the proof we 

assume q is an odd prime, unfavorable for g, which satisfies q > ( g -  1)/2. Assume 

first that q divides p - 1 for some prime p E ~u. If  p divides 2(g - 1), then since q 

divides p -  1, q _< ( g -  1)/2, contradicting our assumptions about q. I f  p does not divide 
2 ( g -  1), then the remark at the beginning of  this section yields that q < ( g -  l) /2 

or q = g - 1. This latter case can occur only if 2g - 1 is prime. Thus, q satisfies 1 

above. Now assume that q divides p ' -  1 for some pi E zro with i > 1, but q does 
not divide p - 1. I f  p = 2 then q satisfies 2 above, so we may assume p is odd. If  
pi divides 2 ( g -  1), this again clearly contradicts that q > ( g -  1)/2. Since pi E 7~g, 

we k n o w  pi-I  divides g - 1, thus pis  = p(g - 1) for some positive integer s. Thus, 

q p i  1 < p ( g s -  1) (14) 

If  d li for some integer d between 1 and i, then 

q < P ( g -  1) (15) 
s( p d - 1) 

contradicting that q > ( g -  1)/2. Thus i is prime. Thus 

p i - 1  _ ( 1  + p + . . . + p i _ l )  < p ( g -  1) (16) 
q p - - 1  s ( p -  1)" 
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Since q > (g - l )//2, we obtain s _< 2. Recall from the proof of  Theorem 3. l that since 
p/ E ~t~, pi is the order of  N ' ,  and the Riemann Hurwitz formula (8) holds for pi. 
Thus, (8) yields 

2pi- l  s = 2pi(g ' - 1 ) +  r p i - t ( p  - 1). (17) 

Recall i n ( 1 7 )  that 9 ' ->  1. Thus, s =  1 and p = 3 ,  o r s = 2  and p = 3  or 5. 

Assume now that p = 3. I f  i = 2, then (16) yields that q = 2, contradicting that q is 
odd. If  i is an odd prime and (3 i -  1)/2 = 1 + 3 + . . - +  3 i-  I is not prime, then ( 3 / -  1)/2 

is not divisible by a prime less than 5. In this case (16) yields that q < ( g -  1)/2, 
again contradicting our assumptions on q. Thus, q = (3 i - 1)/2 is prime. This yields 3 

above. An analogous argument for p = 5 yields 4 above. [] 

4. Explicit examples with defining equations 

In [7, 9], the defining equations o f  families of  Riemann surfaces whose members 

have a trivial automorphism group are given. In [7] the following family is presented. 

Let n > m + 1 > 3, and assume n - 1 and m are relatively prime. Let C be the locus 

o f  the equation 

f ( x ,  y )  = y" + y p ( x )  + a,,x = 0 (18) 

in C 2. In (18), we assume p(x )  E C[x] has degree m and x but not x 2 divides p(x) .  

In addition, the coefficient of  x m-1 in p(x )  is 0. The only restriction on a, is that it 

makes the locus of  C nonsingular in C 2. 
Let C'  be a nonsingular model for C. In [7] it is shown that C'  may be considered 

as C with two additional points P and Q adjoined. The genus of  C'  is n(m - l ) /2  and 

C '  has a trivial automorphism group. Let R denote the point (0,0). The functions x 

and y have the following divisors: 

( x ) = n R + ( 1 - n ) P - Q ,  O ' ) = R - m P + ( m - 1 ) Q .  (19) 

We construct the following examples based upon (18). 

Example 1. Let f ( x , y )  be as in (18), let f l  . . . . .  f s  be elements of  C(x ,y )  and for 
each i with 1 _< i _< s, let r/i be an upper bound for the number o f  points of  C'  

where f i  has either a zero or a pole. Let N = nl + . . .  + nr. For each i, let qi be 

a prime satisfying qi > 6(2,q + N -  1), let ql . . . . .  qr be distinct, and assume f i  is 
not a q/th power o f  an element of  C(x,y) .  This latter condition can be achieved, for 

example, by choosing qi greater than the degree of  the pole divisor of  f / .  For each 
i with 1 < i < r, let ~i be an arbitrary positive integer. Define Q/ = qy'. Consider 

the polynomial F(TI . . . . .  Tr) : I~ ' : l (T i  Q' - / i ) -  Let X be a nonsingular model for the 

function field defined by f ( x ,  y)  = 0 and F(TI . . . .  Tr) = 0. Since for each i, f i  is not 

a qith power of  an element o f  C(x, y), we obtain, [C(X)"  C(x, y)] = Q1Q2...  Q,.. The 
Riemann surface X admits an automorphism group H ~ ZQt + .  •. + Y_Q,. ~- Y-Q~...Q, and 
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C t = X/H.  The points of  C / which are ramified in X are the points where one of  the 

f i ' s  has a zero or pole. Thus, for each qi there is an element of  H of  order qi which 

is not fixed point free on X. Since C ~ has a trivial automorphism group, Corollary 2.5 

yields that H = A u t ( X ) .  

Example 2. We now show how knowledge of  an automorphism group with a genus 

zero quotient can be used to construct nontrivial automorphism groups with a genus g 

quotient for g > 2. 

Let q and p be primes and let q - 1 rood p. Let the positive integer j be a primitive 

pth  root of  unity in 7/q, and let d : ( j P  - l ) / q .  In addition, let ~, and ), denote primitive 

pth  and qth roots of  unity in C, respectively. Consider the field extension o f  C( t )  given 

by 

)J 
H \(~p-~t- 1)p Z q (20) 
i=0  

Let Z be a nonsingular model for the function field C(t ,z) .  It is easy to see that Z 

admits a nonabelian automorphism group H of  order qp. This group has generators a 

and v where 

zJ(ct - 1 )@ 
~(t) = et, v(z) - -  (tP -- 1)d ' (21) 

a( t )  = t, a (z )  = )z. (22) 

The function field corresponding to the Z/'H is C(tP), thus Z / H  is the Riemann sphere. 

There are exactly three points o f  the Riemann sphere which are ramified in Z; the 

ramification index o f  the points 0, vc, and 1 are p, p and q, respectively. 

We use the above automorphism group to construct a Riemann surface X which 

has a full automorphism group of  order pq. Let f ( x ,  y )  and 9( t , z )  be as in (18) and 

(20), respectively, and let X be a nonsingular model for the function field defined by 

f ( x , y )  = O, g ( t , z )  = 0, and t p - x  = 0. From (19) we see t ~ C(x ,y ) .  It is clear 

that X admits a group of  order pq  generated by a and v where a and ~ are defined 

as in (21) and (22) and act as the identity on y. We call this automorphism group 

H again and note that C'  = X/H. In addition, X is unbranched over C'  at points 

where x ¢ 0, 1, or oc. Note that R,P, and Q are the only points where x takes on the 

value 0 or vc. Considering (18), there are at most n points of  C ~ at which x takes 

on the value 1. Thus, there are a maximum number of  n + 3 points of  C I which are 

ramified in X. Calculating k as in the Remark in Section 2 we obtain L = pq and 

k = 6 p q ( 2 g  + n - 2 ) / ( p q  - 6). Thus, if  p > k then H = A u t ( Y ) ,  A short calculation 

shows that p > k if  p > 6 ( n m -  2). 

Example 3. The construction of  fixed point free examples is more delicate. For exam- 

ple, if  a cyclic automorphism group is defined by the equation T q - -  g = 0 ,  where q is 

prime and g c C ( C ) ,  then every pole or zero of  g must be a multiple of  q. Functions 
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which satisfy such a constraint on their divisors may be difficult to construct. However, 
we offer the following example. 

Let C t be as above. In addition, assume m and n are chosen so that p = 2g ÷ 1 = 

n(m - 1) + 1 is prime. Let f ( x , y )  be as in (18) and let the Riemann surface X be a 
nonsingular model for the curve defined by f ( x , y )  = 0, and w p -  y x  m - I  = 0. Then 

Aut(X)  is cyclic of  prime order and C ~ is the orbit space of  X under Aut(X). 

Proof. Note from (19) that ( y x  m - I  ) = pR - pP. It is obvious that X admits an 

automorphism a o f  order p which fixes x and y and maps w to ,:,w where 2 is 
a pth root o f  unity. Let H denote the group generated by a; thus X/H = C'. It 

is easily shown that H is fixed point free. A short calculation shows that p is not 
one of  the unfavorable primes listed in Corollary 3.5. Since C t admits no nontrivial 

automorphisms, the corollary yields that H = Aut(X). [] 

5. Simple fixed point free groups with a genus three orbit space 

If  a particular genus is chosen to be the orbit space o f  a Riemann surface under a 

group of  automorphisms, the Riemann Hurwitz formula reveals more information than 

in the general case. As an example, in this section we restrict our attention to Riemann 

surfaces X which admit a simple fixed point free automorphism group H such that X/H 

has genus three. Throughout this section X will denote a Riemann surface of  genus 

g , , H  <_ Aut(X)  is a simple fixed point free automorphism group, and X/H has genus 3. 

Proposition 1.2 yields that IHI = (g~ , -  1)/2. Thus, if H ¢ Aut(X), then for any group 

G with H < G <_ Aut(X), we have IGI is a multiple of  ( g x -  1)/2. Using the Riemann 
Hurwitz formula (1), it is not difficult to determine the restrictions it places on the 

order o f  IGI. Specifically, [G : H] E f2, where 

(2 = {2,3 . . . . .  26 ,27,28,30,32,33,36,40,42,48,60,72,80,96,  168}. (23) 

Theorem 5.1. Let X be a Riemann surface, let H <_ Aut(X)  be a nonabelian simple 

f ixed point free automorphism group and let X/H have genus 3. Assume H is not 
PSL(3,3) or PSL(5,2) and let p be the largest prime dividing the order o f  H. Assume 

H is" not a maximalsubqroup o f  a simple group G with p < [G : H] E f2. Then 

H = Aut(X)  i f  and only i f  there is" no nonidentity automorphism o f  X/H which lifts 

to X. 

Proof. This follows directly from Theorem 2.8. The only characteristically simple non- 

solvable groups with order in f2 are As and PSL(2,7). The only elementary abelian 
groups of  order pk E £2 are of  order 3 2, 3 3, 5 2 or 2 k with k = 1 . . . . .  5. The corresponding 

GL(k, p)  groups contain the following simple groups [1]: PSL(4,2),PSL(5,2),PSL(3,3),  

PSL(2,7),As,A6,A7,As. All of  these groups are contained as a maximal subgroup of  a 
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s imple  group,  wi th  index  in /2, excep t  for PSL(5,2), and  PSL(3,3). Thus  T h e o r e m  2.8 

y ie lds  the  conc lus ion .  [ ]  

U s i n g  T h e o r e m  5.1 and  T h e o r e m  2.4 is not  difficult  to p rove  the fo l lowing.  

Proposition 5.2. Let H = PSL(2,q") where q" > 11. Let X be a Riemann smface, 

let H <_ Aut(X)  be f ixed point free, and let X//H have 9enus 3. Then H = Aut(X)  i f  
and only i f  no nonidentity automorphism o f  X/H lifts to X. 

P r o o f .  I f  qn > 11, then  PSL(2,q") conta ins  no  subg roup  o f  index  less than  q" [5]. 

Thus  i f  qn _> 168, T h e o r e m  2.4 y ie lds  the  conc lus ion .  I f  q" < 168, one  can  apply  

P ropos i t ion  2.3 or  one  can  use [1], to check  tha t  PSL(2,q ~) is not  con t a ined  as a 

m a x i m a l  subgroup  o f  a s imple  g roup  wi th  index  in /2. [ ]  
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